

☎ +1.415.883.8400 w 1.800.GENOME.1 w fax +1.415.883.8488

: info@biosearchtech.com www.biosearchtech.com

81 Digital Drive W Novato, CA 94949-5750

Presentation date: March 9, 2009 **Ouestions about content?** ben@biosearchtech.com

REALTIME DESIGN

Figure 1: screenshot from RealTimeDesign™, showing oligo sequences and their properties. This software is available for free public use on the web at:

www.qPCRdesign.com

RealTimeDesign is a high-throughput web application for oligo see guence design. A new multiplexing module carefully considers inn teractions between the assays while combining them into sets. An instrument drop-down menu suggests the best reporter combinaa tion according to the degree of multiplexing. To validate the soft ware module, we developed two pentaplexed assays targeting a panel of mouse genes. Both assays yield similar performance here we present the results from one.

Mothoda

	INICTIO	us				
	Triplicate reactions were prepared for all dilution points. Mouse genomic DNA was amplified at a quantity of 3.75 ng per reaction to confirm singleplexing/multiplexing equivalence. PCR products from these reactions were			Reaction Components	Volume	Final (
				 Sample Template 	3.00 µL	N/A
				 2X Immomix (Bioline) 	10.0 µL	1X
	then diluted in	n series to provide pentaplexed assays a disproport	 Each Forward Primer (10 µM) 	5x 0.60 µL	300 n	
	number. Serial dilutions were prepared in nuclease-free water containing 100 ng/µL of yeast IRNA. Real-Time PCR is performed on the Rotor-Gene 6000 using the following thermal civiling contillings PS I/C for tao min followed			 Each Reverse Primer (10 µM) 	5x 0.60 µL	300 n
				 Each Probe (10 µM) 	5x 0.20 µL	300 n
	by 40 cycles of 95 °C for 20 s, 60 °C for 60 s.		TOILONVED	Total Volume	20.0 µL	
	Gene Target:	Oligo Sequences	Gene Target:	Oligo Seguences		
	lsq20	Forward: GGCACTGACATCCTTCATCTTCT	F13a1	Forward: CCGGACCTCATTTC	CCATGA	
	-	Reverse: AGGCAGCTCGGAGGTAGAAAG		Reverse: GTGGGCACCAGAG	ACTACAAG	
	[FAM]-TGTCGGAATGGTCAGGATTGCTGATC-[BHQ1]		[CAL Fluor Orange 560]-TGTCAGGACCCTCCTCCAC		CTCCACAA	A-[BH
	Ppa2	Forward: GCCCAGTATGCTTGGGTATC	Camta1	Forward: TGTGCAGCTCTGA/	AGTCATTTC	;
		Reverse: TGCTGACTCCCAGAACAGA		Reverse: CCCAGGAAAGTGT/	ACGGAAAG	AG
	[CAL Fluor Red 610]-TGCAGGTGCTACAACGGCCAG-[BHQ2]		[Quasar 670]-AGGCAGGCAGACACTTCTTCCA-[BHQ2]			
	Ube2o	Forward: TCTGCACTGCCACAGATAAGG				
		Reverse: GAAGCCAGCTGTCACTAGACA				
	[Quasar 705]-	TGGGCAGGCAGAATAGCCAGATTA-[BHQ2]				

We would like to acknowledge Dean Fiala, Raymond Peterson, and the rest of Celadon Laboratories, for developing the code that powers RealTimeDesign.

A Rapid Bioinformatic Engine for Multiplexed qPCR Design Ben A. Sowers, Luan Le, Ron M. Cook

Multiplexed qPCR remains a challenging endeavor for reasons that include: 1) designing assays to combine without interference, 2) resolving fluorophores using the optics of each real-time instrument, and 3) optimizing and validating each assay's performance. Here, we address each of these issues when developing several pentaplexed assays that target genes from the mouse. Each assay was designed using a free, online, software program that carefully considers inter-oligo interactions while simultaneously buildd ing its multiplexed set. Situations of disproportionate copy number present a particular challenge upon multiplexed performance; additional effort is needed to validate a multiplexed set, as compared to individually amplified assays.

Fluorophores and Instrument Optics

Multiplexed gPCR amplifies several targets simul taneously but detected independently using diss tinct reporters. We select well resolved fluorophores with minimal spectral overlap

Emission Spectra of Fluorophores for Multiplexing

Figure 2: the normalized emission spectra for a series of fluorophores provide a reference to choose potential candidates for multiplexing.

Validating Amplification Performance

Optical specifications are different for each therr mal-cycler. When choosing fluors, we consider the excitation source, whether it is LASER, lamp, or LED, as well as the filters for detection.

Figure 3: optimal reporters for a pentaplexed assay on the Rotor-Gene Q are identified by comparing spectra to the instrument's filter specifications.

Crosstalk is fluorescent bleed-through between adjacent channels. If unanticipated, crosstalk can produce false positive amplifications and impair quantification.

Figure 4: signal bleeds through from CAL Fluor Red 610 (red traces) into the channel detecting Quasar 670 (blue traces). Crosstalk is subsequently removed using software settings.

To confirm that performance remains uncomproo mised upon combining the assays, the C T values for individual reactions should overlay those multiplexed.

Beyond the bioinformatics, further effort is needed to validate a multiplexed assay. In certain applications such

Figure 6: multiplexed reactions (black) overlay those amplified individually (green) at a given target quantity.

Conclusion

RealTimeDesign now enables multiplexed qPCR with rapid oligo design. We have shown that these oligos may be combined into pentaplexed assays with excellent performance characteristics.

Certain aspects of PCR technology may be proprietary, and claimed by US patents including patent Roche Molecular Systems Inc. or licensed by Roche from Life Technologies (formerly Applied Biosystems, Inc.) in certain fields. In addition, the 5' nuclease assay and certain other homogeneous amplification methods used in onnection with the PCR process may be claimed by certain patents of Roche or Life Technologies, including U.S atents 5,210,015 and 5,487,972, owned by Roche Molecular Systems, Inc, and U.S. Patent 5,538,848, owned by ife Technologies. "Rotor-Gene" is a registered trademark of Qiagen. Black Hole Quencher, BHQ, CAL Fluor, and Duasar are registered trademarks of Biosearch Technologies, Inc., Novato, CA.