

BIOSEARCH TECHNOLOGIES

Advancing Nucleic Acid TechnologySM

- ☎ +1.415.883.8400 w 1.800.GENOME.1 w fax +1.415.883.8488
- : info@biosearchtech.com www.biosearchtech.com
- 81 Digital Drive W Novato, CA 94949 Presentation date: March 9, 2009
- Questions about content? ben@biosearchtech.com

Loss of Native Allele Assay

The Velociaene® division of Regeneron employs Bacterial Artificial Chromosomes to recombine across the genes of interest. Detailed methods on creating these complete null mutations can be found:

Valenzuela, D. M., et al. (2003). High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21, 652-659.

Knockout is confirmed by qPCR, comparing the amplification of six reference genes against two assays that target the beginning and end of each gene. To date, the total assays generated by RealTimeDesign and tested by Regeneron are as follows:

> 5000 assays synthesized. > 4500 tested for performance. 93% success for new designs. +80% success for re-designs.

Design rules are incorporated in three parameter sets of decreasing stringency. RealTimeDesign automatically applies them in series, all though challenging targets may require deviating from the default.

- 87% of all assays designed using three default parameter sets.
- The Most Restrictive parameter set yields a 96.7% success rate.
- The Less Restrictive parameter set yields a 96.4% success rate.
- The Least Restrictive parameter set yields a 94.4% success rate. • Assays that cannot be designed under the above parameters

Assay sequences that have been tested with success are available to view at www.KOMP.org & www.velocigene.com/KOMP/search

Methods

yield an 83.6 % sucess rate.

KOMP Assays are initially designed using the Express Mode of RealTimeDesign operating under default parameter sets. Assays pecificity is then confirmed using the 'electronic PCR' tool available through the National Center for Biotechnoli ogy Information. Genes that fail to yield an assay under Express Mode, or those that reveal of Larget hits by ePCR are then designed using the Custom Mode of RealTimeDesign with parameter values that deviate from the default. For the purpose of this poster, the performance of assay pairs are screened by amplifying		med using • Sam otechnoll • 2X I , or those • Each • Mode of • Each • For the • Each	on Components ple Template mmomix (Bioline) Forward Primer (10 µM) Reverse Primer (10 µM) Probe (10 µM)	Volume 3.00 µL 10.0 µL 5x 0.60 µL 5x 0.60 µL 5x 0.20 µL	1X 300 nM 300 nM
mouse genomic DN ng / reaction. PCR thermal cycling cor	Nouse genomic DNA (Promega cat. no. G3091) in triplicate at a quantity of 3.73 g / reaction. PCR is performed on the Rotor-Gene 6000 using the followin nermal cycling conditions: 95 °C for ten min. followed by 40 cycles c 5 °C or 20 s, 60 °C for 60 s.		I Volume	20.0 µL	
Assay Name: Gsdma2-10517TU	Oligo Sequences: Forward: TTCCTTACCACAGATCCAACAC	Assay Name: Gsdma2-10517TD	Oligo Sequences: Forward: AGCCTTCC0	GGCCTTA	CTG

Gsdma210517IU Forward:TTCCTTACCACAGATCCAACAC Gsdma210517ID Forward:AGCCTTCCCGGCCTACTG Custom Parameters Reverse: CACAGTCCCCTTACCTCATCA Most Restrictive Reverse: ACTGCCTCGCGCCTCAGCG Probe:[FAM].rTGCTGGATGTCACAGTAGAGGGAGATGT[BHC1] Probe:[FAM].rCCTCTGTCTGAAACACTCCAAGATGGT[BHC1] Assay Name: Oligo Sequences: Bmp8A-10245TU-2 Forward: TATCTGCTCTCCGCCCACC Custom Prameters Reverse: ACGGTAGACCCGTCCTTGAI Probe: [FAM]-CGCTGCCCCACCGCCTTATCC-[BHQ1]

Assay Name: Oligo Sequences: Bmp8a-10245TU Forward: GAAGACCAAGGGCGTGAAG Less Restrictive: AAGATGCCCAGGCCGAAGTC Probe: [FAM]-CGCTGCCCACCGCCTTATCC-[BHQ1]

Certain aspects of PCR technology may be proprietary and claimed by US patents including patents owned by Roche Molecular censed by Roche from Life Technologies (formerly Applied Biosystems. Inc.) in certain fields in addition, the 5' nuclease assay and mogeneous amplification methods used in connection with the PCR process may be claimed by certain patents of Roche or claiming US. Patents 5210015 and 5430792, owned by Roche Molecular Systems. Inc. and US. Patent 5328848, owned by Li "Rotor-Gene" is a registered trademark of Claigen. Black Hole Quencher, and BHQ are registered trademarks of Biosearch Tec

We would like to acknowledge Dean Fiala, Raymond Peterson, and the rest of Celadon Laboratories, for developing the code that powers RealTimeDesign. We also thank Yingzi Xue, Rostislav Chernomorsky, David Frendeway and others in the Velocigene® division of Regeneron.

Oligo Design Across the Mouse Genome

Ben A. Sowers, Luan Le, Ron M. Cook

Gsdma2 Assays in Agreement

20 Cvcle

Bmp8a Assays in Conflict

20 Cycle

Abstract: Fluorescence-quenched probes are routinely used to gauge gene copy number. We describe a bioinformatic engine for the design of such oligos, and used to generate five thousand gPCR assays for the NIH Knockout Mouse Project (KOMP). Here, we demonstrate the performance of a subset when amplified from wild-type mouse DNA. Analysis of this data-set uncovers important trends in amplification performance and emphasizes the need to screen assay specificity using both bioinformatic and empirical aproaches. Redundancy and accessibility are considerations that become pronounced in large-volume sequence design. Based on this experience as well as user feedback, new software functionality is introduced to improve upon these qualities.

Example Assays

Redundancy is key since the read-out from qPCR assays occasionally mislead. Although designed under different paa rameter sets, the agreement between two assays targeting the gene Gsdma2 (right) typify the majority of assay pairs designed for KOMP.

Figure 1: assay 10517TU (red traces) and 10517TD (black traces) both target the gene Gsdma2 and demonstrate equivalent CT values when amplifying from 3.75 ng of DNA.

Newly-developed qPCR assays are screened against a known quantity of wild-type DNA and fail if they do not amplify within two cycles of expected. Assays that co-amplify gene homologs might cross the threshold too early.

Figure 2: assay 10245TU (red traces) co-amplii fies multiple Bmp homologs and crosses the cycle threshold earlier than expected. The ree design of this failed assay (black traces) specifii cally targets Bmp8a to the exclusion of others

Conclusion

RealTimeDesign plays a critical role in the KOMP by rapidly generating oligo sequences to mouse gene targets The testing of this collection of assays indicates a good rate of success and offers important insights into the PCR process: specificity must be screened in advance or else become the principal reason for amplification failure. Common design guidelines such as ball anced GC content, short amplicon length, and minimal misalignments are built into the software's algorithms. Their importance is underscored by the increasing rate of success corr related with the increasing stringency of parameters. But in a testament to the robust PCR mechanism, any one of these guidelines can be discarded to generate a functional assay still, as confirmed by those assays designed on a custom basis. RealTimeDesign is available through the web, it processes on a remote server to avoid consuming local computer resources, and arr chives each design into a unique database for every user. These qualities have proven essential for high-throughput projects such as the KOMP

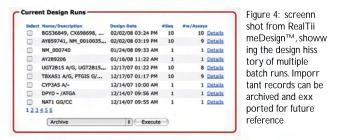


Figure 3: screenshot from RealTimeDesign™, showing oligo sequences and their properties. This software is available for free public use on the web at:

www.gPCRdesign.com

RealTimeDesign is a web application for oligo sequence design and used to generate primers and probes for the KOMP in a rapid and automated fashion. The following software features play a critical role in this and other high-throughput projects:

- Numerous genes are processed simultaneously in batches.
- A user database stores the history from 100 different designs.
- Parameters can be customized and made default for the future.

New features developed specifically for the KOMP:

• tAlternate assays are now quickly designed at the click of a button when the original is found to fail performance testing. • BHQ*plus*[™] probes are now proposed for challenging targets that cannot accommodate traditional dual-labeled probes.

Figure 5: BHQplus probes contain a duplex stabilizing chemistry to allow shorter oligo sequences that bind at the proper temperature

